TP Quantique - Valeurs propres et vecteurs propres#
Il s’agit en utilisant Python et PyLab de résoudre un exercice de quantique simple. Les matrices considérées sont de petite taille de façon à pouvoir vérifier facilement les calculs à la main.
Dans un espace vectoriel à deux dimensions, on considère un opérateur \(A\) représenté, dans une base orthonormée \(\{|1>, |2>\}\), par la matrice suivante :
Question (a) : Hermiticité#
\(A\) est-il hermitique ?
Question (b) : Valeurs propres et vecteurs propres#
Calculer ses valeurs propres et ses vecteurs propres \(|u_1>\) et \(|u_2>\) (on donnera leur développement normalisé sur la base \(\{|1>, |2>\}\)). Vérifier que les vecteurs propres satisfont à des relations d’orthogonalité.
Question (c) : Projecteurs#
Calculer les matrices \(P_1\) et \(P_2\) représentant les projecteurs sur les vecteurs propres \(|u_1>\) et \(|u_2>\), respectivement. Avec ces matrices, vérifier que les vecteurs propres satisfont à une relation de fermeture. Calculer les produits de matrices \(P_1 P_2\) et \(P_2 P_1\). Commenter votre résultat.
Cet exercice est inspiré d’un exercice du livre Mécanique quantique - Tome1 de Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë, Editeur Hermann (1997).